
MATHEMATICS OF COMPUTATION
VOLUME 64, NUMBER 210
APRIL 1995, PAGES 807-818

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION

CHRISTIAN BIESTER, PETER J. GRABNER,
GERHARD LARCHER AND ROBERT F. TICHY

ABSTRACT. Motivated by a linear time-complexity result for an adaptive Monte
Carlo algorithm, we propose and analyze an adaptive deterministic algorithm.
We restrict a grid search to nested subregions that promise to provide improve-
ment of the current solution, and we obtain an exponential rate of convergence
in function evaluations. For proving the main result we restrict ourselves to
functions on hypercubes. In a final section we outline how to extend the method
to the general case and give some numerical examples.

1. INTRODUCTION

Let S be a closed and bounded subset of Rn, f a continuous real-valued
function defined on S, and y* := maXXEs f(X) . In [8] a pure adaptive search
algorithm for the approximate calculation of y* is introduced provided that
f is concave on a convex body S, and that y* = f(x) has a unique solution
x-x*

Algorithm 1.

Step 0. Set k 0, So =S and yo < minxEs f(x)= Yk
Step 1. Generate xk+l uniformly distributed in Sk+1 {XIX E Sk and f(x)

2Yk}
Step 2. Set Yk+l = f(Xk+l). If a (preset) stopping criterion is met, stop. Oth-

erwise set k :- k + 1 and return to Step 1.

By construction, Yk is an increasing sequence of points that almost surely
converges to y*. It is shown in [8] that for the expectation value E(yk) (in the
standardized case y* := minxEs f(x) = 0, y* = 1, Yo = Y*)

(1.1 E(Yk) 1 (I n)

Received by the editor July 6, 1993 and, in revised form, March 14, 1994.
1980 Mathematics Subject Classification (1985 Revision). Primary 65C05, 1llK45, 65D99,

65K10.
The second and fourth authors are supported by the Austrian Science Foundation project Nr.

P-10223-PHY.

@)1995 American Mathematical Society
0025-5718/95 $1.00 + $.25 per page

807

808 CHRISTIAN BIESTER ET AL.

Furthermore, the probabilistic estimate

k,,m :=min{kIPr(Yk?>)- > 1 - d

<2(n+l)log (m (1+))

holds for all m > 1 and 0 < a < 1.
These results are shown by considering the worst case of this algorithm, i.e.,

taking f = g, where

(1.3) g(x) :=inf{yI(x, y) E convex hull of(x*, y*) and (S, y*)}.

In applications of Algorithm 1 some striking problems occur: The authors of
[8] write, "However, at the present time we do not have efficient procedures for
generating uniformly distributed points in general convex regions." The actual
and much more serious problem is that in Step 1 of Algorithm 1 it is assumed
that the new set Sk+1 is given explicitly (in a constructive way). But this, of
course, in general is not the case, and so for practical purposes a further step
would be necessary where Sk+1 is determined or at least estimated. In this case
it is doubtful whether the bound (1.2) remains linear in the dimension n or
not. We remark here that in the forthcoming paper [10] linearity with respect
to the dimension is extended to the case where f is 1-Lipschitz-continuous.

Another disadvantage (as is characteristic for all pure Monte Carlo methods)
is, of course, that the results are merely probabilistic. The aim of the present
paper is the presentation of an adaptive Quasi-Monte-Carlo algorithm which
is now practicable in the form as stated. Furthermore, deterministic error esti-
mates are established, and for a large class of functions exponential convergence
to the maximum is shown.

2. THE ALGORITHM

Let for simplicity S = [O, 1]n be the n-dimensional unit cube, f: SF-+ R be
a function which is ?-Lipschitz-continuous with 1 < ? < 2. This means that
there exists a constant L > 0 such that for all xo E S there is an A(xo) E Rn
satisfying

(2.1) If(x) -f(xo) -A(xo)(x-xo)I < Lllx-xxoll

for all x E S. (By II * we denote the maximum norm.)
Of course, if ? > 1 then A(xo) = grad fIxo (by the definition of differentia-

bility), and if ? = 1 then we may take A(xo) = (0, ..., 0).
Let maxXES f(x) y* and e > 0. We want to determine a point x E S

with y* f(x)<e.

Algorithm 2.
Step 0. Io := S =[0, 1]n
Step 1. Ik is a union of cubes of the form

I| [2k 1] withO<ai<2k 11[F 2kj

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 809

Construct Ik+l in the following way: Divide each of the subcubes of
Ik into 2n subcubes of half side length in the natural way and set

Mk+1 := max{f(x)I x is vertex of one of the new subcubes }.

Take Ik+I as the union of all new subcubes which have at least one
vertex x with

L
f(x) > Mk+1 - 2(k+l)qK

Step 2. Take xk+l such that Mk+1 = f(Xk+1). If 2(kL+)t1 < e take x := Xk+1.

Otherwise set k := k + 1 and return to Step 1.

3. ANALYZING THE ALGORITHM

We first need the following

Lemma. Let W:= Hjdbi~, bi + p] C [0, if be a subcube of S with vertices
Xl ... , X2n , and let f be ?-Lipschitz-continuous on S with constant L. Then
(3.1) max f(x) - max (xi) < Lp'.

xEW i=1 ..2n

Proof. Let f(xo) maxXEw f(x). Then f(x) f(xo) + A(xo)(x - xo) takes
its maximum in W at one point xi so that

f(xi) := maxf(xj) > f(xo) = f(xo)

and

If(xj) - f(xj)I < Lllxo - xjII < Lp1,
from which the result follows. 0

For every cube W with side length 2 and with f(xi) < Mk - L for all
vertices xi, by the lemma we have f(x) < Mk < y* for all x E W . It
follows that x* E Ik for all x* E S with f(x*) = y*. Therefore, we obtain
IMk _ y*I < < e if k := [110g2 L1, where [xl denotes the least integer
larger or equal to x.

Hence, one has to run through the algorithm [log2 L1 times. As a measure
for the complexity of the algorithm we have to consider the number of function
evaluations needed. Trivially, in any case, at most (2k + l)n evaluations are
needed to determine Io, I,, . . . , Ik . So in the worst case we need N = (2k+1)n
points to achieve an error less than

L L
(3.2) = (Ni/n-

which is the usual rate in nonadaptive Quasi-Monte-Carlo-optimization (see [4]
or [6]).

In many cases we will now get much better estimates. The quality of these
estimates depends on the behavior of f in the neighborhood of its maximum
points. From now on we make use of the following three assumptions:

(A) There are at most finitely many points xl*, . x. , 4 with f(x7) = y*.
(B) If

y := sup{f(x)I x is point of a local extremum of f and x # x* for all i },
then let b:= y*-y> 0.

810 CHRISTIAN BIESTER ET AL.

(C) There are constants c, c, y > 0 with y* - f(x) ? cjjx7 - xljy for all x
with j1x7 -xll < a and every i= 1, ... w.

We will show

Theorem. With the above notation let Ik be a dyadic cube such that for every
point x E Ik the estimate y* - f(x) < e holds. For the determination of Ik by
Algorithm 2 we need at most K(e, f) function evaluations, where

f { 1 + 2w max Q2(L)y7, 3n [I log2) ifi?< y,

It, +2w/.3 1092 elif 17> Y

with
n

() (((~min(b, c(62)Y))

I2 = 112(f, n) = 2n(3-+) 2L

3 3 (f, n)= (max2(c)3)

Furthermore, {x1, ...x , xW} = flo= Ik k and for every x E Ik there is an
i E {1, ... , w} with lix - xl11 < (2e) provided that

k > max ,1092 min (b, c (2 l'1092 <l
Proof. Let ko be such that < 2 and Mk -L >max(j,y* C(4)Y). Since Mko?y* ~ ~ ~ ~ ~ ~~4 y-> a(~y -c L). ic
Mko > Y* - this is satisfied for

k m (!lo m 2L l og2i)

Thus, for the determination of Io, .. , Ik at most

max ((2 (+) (+))

function evaluations are needed.
Let now k > ko. Then all vertices of subcubes of Ik are in a d-neighborhood

of one of the xi . This follows from (C), since for all x with j1x7 - xli > 6 I i = 1, 2
(i=l... ,W) we have

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 811

Note that the subcubes of Ik have sidelength L < 12 and each of these subcubes
has at least one vertex xi with

f(xi) > Mk - L >LM -
L

- > max y -c

Therefore, fdr k > ko we have for at least one vertex xi of every subcube
of Ik

y* - f(xi) < 2L

Thus, we obtain

2L > Y* _f(Xi) > C|| - Xjilly

which yields

114 xj -x c2k ?

for some i- 1, .., w, and the second assertion of the theorem follows.
Furthermore, Ik contains at most

k+1 2L / + \\fl
W12'+' (2L > + 3) < 2n (max (2 (32) 3))

vertices of subcubes.
Therefore, for the determination of I,, ... Ik(k > ko) we need at most

k f~~~' (2L \ ~
,ul(f, n) + 2w E max (2j 1C 1))3

J 1U1(f, n) + 2w max (2n (2j)n/Y 2n(k+1)(1-ti/Y) 3nk) if 1 < y

| Al (f , n) + 2w max ((2L)n/y 2k, 3nk) if ?I >.Y

function evaluations. Setting k r [log2 L1 completes the proof. O

Remark. The following relations between the number N of function evalua-
tions and the error term y* - f(x) =: A are satisfied:

(3.3) A<pe-N if 11ty

and

(3.4) A<q if <y
* ~ ~~~~ Nn(Y- 7)

with constants p = p(f, n) and q = q(f, n) . This means that our algorithm is
exponentially fast in function evaluations (even in the "worst case" considered
in [8]).

4. CONCLUDING REMARKS AND NUMERICAL EXAMPLES

In this final section we add some general remarks concerning the strength
and usefulness of our method. First of all, note that in [8] the functions were

812 CHRISTIAN BIESTER ET AL.

assumed to be concave, which is much more restrictive than a Lipschitz condi-
tion. Clearly, our Lipschitz conditions are global ones. However, it is sufficient
to know a Lipschitz constant in a suitable box containing the maximum point
(in the case that it is unique).

In the description of Algorithm 2 we restricted ourselves to the simplest case,
where the functions are defined on hypercubes. In the following we discuss
briefly how to proceed in the case of a function on a compact region S C Ren.
The main idea is to replace the sequence of vertices of axis-parallel subcubes
by a fixed "well-distributed" point set P = p... Pm} C S. An appropriate
measure for the distribution of points in S is the so-called dispersion

(4.1) Dm(P) = max mmin d(x, pj),
XES j= 1..,m

where d denotes a suitable metric on S (e.g., the Euclidean one). For the
description of the algorithm in the general case we confine ourselves to the case
that there is a unique maximum point x* (from the presentation of the theorem
it is clear how to proceed in the case of finitely many maximum points).

In the first step we have to determine those points in P, which are possible
candidates for containing x* in a Dm(P)-neighborhood (a precise description
of these points involves the Lipschitz condition and runs along the same lines as
the description of Algorithm 2). In a further step we take a homothetic image
of P in each of these neighborhoods and repeat the first step. This procedure is
iterated until a prescribed stopping condition is satisfied.

The order of convergence of this algorithm substantially depends on the dis-
persion. For this purpose point sets with low dispersion are needed. Such point
sets, in connection with Quasi-Monte-Carlo-optimization, were considered in a
series of papers (cf. [3, 4, 6]). In these papers constructions of such sequences
and estimates for their dispersion are established. In general,

(4.2) Dm(P) 1
mn

holds. In C. Biester's Ph.D. thesis [11 the above algorithm is studied in the
case of various compact regions like balls, cylinders, and special polyhedra.
Furthermore, constructions of sequences with low dispersion in those regions
are presented. For a detailed survey of the literature on Quasi-Monte-Carlo-
Optimization we refer to Chapter 6 of the recent monograph [5] by H. Nieder-
reiter.

In the case of optimization problems with constraints there are two possibil-
ities for applying our algorithm: The first method is to consider the constraints
as a compact manifold embedded in some Euclidean space. This manifold can
be taken as the compact region S in the above description; as a metric on S
one can use the geodesic metric. The case where the manifold is a sphere is ex-
tensively studied in [1] and [12]. The second method is to use transformations
of this manifold to the unit cube. Such transformation methods were studied
in detail by Niederreiter and Peart [7].

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 813

In the following we present some numerical examples demonstrating possible
applications of Algorithm 2. We note that a MODULA-code of the algorithm
is listed in [1] and a PASCAL-code is available by the second author. The first
example is a simple "school problem" and shows that, of course, in such cases
the algorithm works very well. The subsequent examples seem to be much more
interesting. Example 2 is a constrained problem in 3 dimensions which some-
times is used as a test example in global optimization (cf. [2]). Note that our
method can be used for constrained problems just by assigning some fixed value
to the objective function outside the constraint. Example 3 (Colville No. 4) and
Example 4 (Banana-function in 5 dimensions) are also well-known test problems
in global optimization (cf. [2, 9]). A reasonable acceleration of the algorithm
can be obtained in these cases by a pre-search localizing some tight neighbor-
hood of the extreme value. The other examples are nondifferentiable functions
up to dimension 6. The computations show that also for such functions the
algorithm works well (which can be considered as one main advantage of Algo-
rithm 2). In the following tables, M denotes the exact value of the maximum,
M the approximation by Algorithm 2 after k steps with the help of e gener-
ated cubes. The number of function evaluations clearly is 2n . We stopped the
computations if we reached a good approximation of the maximum or if too
many cubes were needed. Finally, we remark that in [1] also a slightly different
Algorithm 2* is studied. This algorithm is based on a point sequence of small
dispersion and the approximate evaluation of grad f.

Example 1.

f(XI, X2, X3) = -(X1 - 0.567)2 - (X2 - 0.89)2 - (X3 - 0.123)2,
M = O.OOOOOE + 00

k M

1 -2.14718E-01 1
5 -2.49249E-04 889
10 -7.45346E-07 5377
15 -6.92149E-10 10201
20 -1.30257E-12 15105
25 -4.99600E-16 19921
26 -5.55112E-17 20825
27 -5.55112E-17 21369
28 O.OOOOOE+00 22009

Example 2 (cf. [2, p. 60]).

f(XI , X2, X3) = X1X2X3
under the constraints

72 -x - 2x22- 2x3 >0, 0< xi< 42, i = 1,2, 3,
M = 3.45600E + 03

814 CHRISTIAN BIESTER ET AL.

k M

1 O.OOOOOE+00 1
2 O.OOOOOE+00 9
3 2.31525E+03 73
4 2.89406E+03 529
5 3.25582E+03 593
6 3.29652E+03 721
7 3.38809E+03 873
8 3.43514E+03 1113
9 3.43579E+03 1529
10 3.44756E+03 1681
11 3.45346E+03 2097
12 3.45347E+03 2721
13 3.45495E+03 3137
14 3.45568E+03 4257
15 3.45568E+03 7265
16 3.45587E+03 10753
17 3.45596E+03 16705
18 3.45596E+03 28065
19 3.45598E+03 51817
20 3.45600E+03 54217

Example 3 (cf. [2, p. 61]).

f(XI, X2, X3, X4) = 100(x2-X 1)2 + (1-XI)2 + 90(X4-X32)2 + (1-X3)2

+ 10.1((X2 - 1)2 + (X4 - 1)2) + 19.8(X2 - 1 - 1),

M = O.OOOOOE + 00

k M!

1 1.60580E-01 1
2 1.19175E-01 17
3 8.34913E-04 177
4 8.34913E-04 1073
5 8.34913E-04 1329
6 3.48864E-04 1585
7 2.64081 E-05 1841
8 2.64081 E-05 2705
9 6.55810E-07 2961
10 6.55810E-07 3217
11 4.59164E-07 3601
12 4.27281 E-09 4993
13 4.27281 E-09 6561
14 4.27281 E-09 8225
15 7.41807E-10 14257

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 815

Example 4 (5-dimensional Banana-function, cf. [9]).

4

f(x, X2, X3, X4 X5) = (10(xk+l1X,2)2 + (1 Xk)2)
k=1

M = O.OOOOOE + 00

k M

1 8.47812E-01 1
2 1.46382E-03 33
3 1.46382E-03 1057
4 1.46382E-03 2081
5 1.46382E-03 3105
6 6.04788E-04 4129
7 4.60453E-05 6209
8 4.60453E-05 9793
9 1.13945E-06 10817
10 1.13945E-06 13729
11 8.03054E-07 14753
12 7.44058E-09 15777
13 7.44058E-09 18881
14 7.44058E-09 19905
15 1.29177E-09 21697
16 6.32966E-10 27329

Example 5.

4

f(xI, X2, X3, X4) = 0.2620-Z (Ixi - 0.24721 + Ixi - 0.76791 - Ixi - 0.31271)
i=l

M = O.OOOOOE + 00

k !

1 -9.28400E-01 1
5 -7.16000E-02 1297
10 -1.28752E-03 3873
15 -6.68168E-05 7233
20 -1.96695E-06 10081
22 -5.96046E-08 11633
23 -5.96046E-08 13025
24 -5.96046E-08 13281
25 -5.96046E-08 13537
26 -5.96046E-08 13793

816 CHRISTIAN BIESTER ET AL.

Example 6.

f(XI, X2, X3, X4) = 10.8974 - Ixi - 0.317211 - xi + X2 - 0.54311
- IXI +X2 +X3- 0.71851 - Ixj+X2 +X3+x4- 0.84341,

M = 0.89740E +00

k ! e

1 -3.14800E-01 1
2 2.96400E-01 17
3 6.62200E-01 241
4 7.33400E-01 1249
5 8.11400E-01 2513
6 8.80250E-01 3617
7 8.88325E-01 4401
8 8.89913E-01 4721
9 8.95875E-01 5073
10 8.95875E-01 5457
11 8.96486E-01 5713
12 8.96709E-01 6033
13 8.97114E-01 6385
14 8.97308E-01 6721

Example 7.

f(X1, X2, X3, X4) = 11 - Ixi - 0.317211 - 1l- IX1 +X2 - 0.54311/

-IXI +X2 +X3- 0.71851 - Ix1+X2 +X3+x4- 0.84341,

M = 2.OOOOOE + 00

k M e

1 7.87800E-01 1
2 1.39900E+00 17
3 1.76480E+00 241
4 1.83600E+00 1249
5 1.91400E+00 2513
6 1.98285E+00 3617
7 1.99093E+00 4401
8 1.99251E+00 4721
9 1.99848E+00 5073
10 1.99848E+00 5457
11 1.99909E+00 5713
12 1.99931E+00 6033
13 1.99971 E+00 6385
14 1.99991E+00 6721

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 817

Example 8.

f(xi, X2, X3, X4, X5)

5

= 0.3275 - Z (Ixi - 0.24721 + Ixi - 0.76791 - Ixi - 0.31271) ,
i=l

M = O.OOOOOE + 00

k e

1 - 1.16050E+00 1
2 -1.16050E+00 33
3 -8.95000E-02 1057
4 -8.95000E-02 4641
5 -8.95000E-02 5665
6 -6.67501E-02 6689
7 -1.13750E-02 10273
8 -1.13750E-02 15425
9 -8.15639E-03 16449
10 -1.60941E-03 17473
11 -1.60941E-03 22625
12 -8.32170E-04 23649
13 -3.88712E-04 24673
14 -2.21819E-04 29825
15 -8.35359E-05 33409

Example 9.

f(xl, X2, X3, X4, X5, X6)
6

= 0.3852 - Z (Ixi - 0.24721 + Ixi - 0.76791 - Ixi - 0.31271)
i=l

M = O.OOOOOE + 00

k M

1 -1.47540E+00 1
2 -1.47540E+00 65
3 -2.46001 E-02 4161
4 -2.46001 E-02 20545
5 -2.46001 E-02 24641
'6 -2.46001 E-02 28737
7 -2.46001E-02 32833

818 CHRISTIAN BIESTER ET AL.

BIBLIOGRAPHY

1. C. Biester, Zahlentheoretische Simulation von Zufallspunkten mit Anwendungen in der nu-
merischen Analysis, Ph.D. Thesis, Technical University of Vienna, 1991.

2. W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Springer
Lecture Notes in Economics and Mathematical Systems, vol. 187, 1981.

3. H. Niederreiter, A Quasi-Monte-Carlo-Method for the approximate computation of the ex-
treme values of a function, Studies in Pure Mathematics (P. Erdos, ed.), Birkhauser, Basel,
1983, pp. 523-529.

4. , Quasi-Monte-Carlo-Methods for global optimization, Proc. 4th Pannonian Sympos.
Math. Stat., Bad Tatzmannsdorf (Austria), 1983, pp. 251-267.

5. , Random number generation and Quasi-Monte-Carlo methods, SIAM Lecture Notes,
vol. 63, Philadelphia, PA, 1992.

6. H. Niederreiter and P. Peart, Localization of search in Quasi-Monte-Carlo-Methods for
global optimization, SIAM J. Sci. Statist. Comput. 7 (1986), 660-664.

7. , Quasi-Monte-Carlo-Optimization in general domains, Caribbean J. Math. 4 (1985),
67-85.

8. N. Patel, R. Smith, and Z. Zabinsky, Pure adaptive search in Monte-Carlo-Optimization,
Math. Programming 43 (1988), 317-328.

9. K. Schittkowski, More test examples for nonlinear programming codes, Springer Lecture
Notes in Economics and Mathematical Systems, vol. 282, 1987.

10. R. Smith and Z. Zabinsky, Pure adaptive search in global optimization, Math. Programming
53 (1992), 323-338.

11. R. F. Tichy, Random points on the sphere with applications to numerical analysis, Z. Angew.
Math. Mech. 70 (1990), T642-T646.

12. , Random points in the cube and on the sphere with applications to numerical analysis,
J. Comput. Appl. Math. 31 (1990), 191-197.

(C. Biester) ALBERTG. 49/8, 1080 WIEN, AUSTRIA

(P.J. Grabner and R.F. Tichy) INSTITUT FtJR MATHEMATIK, TU GRAz, STEYRERGASSE 30, 8010
GRAz, AUSTRIA

E-mail address, P. J. Grabner: grabnerOf tug. dnet . tu-graz. ac . at

(G. Larcher) INSTITUT FUR MATHEMATIK, UNIVERSITXT SALZBURG, HELLBRUNNERSTR. 34,
5020 SALZBURG, AUSTRIA

