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ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 

CHRISTIAN BIESTER, PETER J. GRABNER, 
GERHARD LARCHER AND ROBERT F. TICHY 

ABSTRACT. Motivated by a linear time-complexity result for an adaptive Monte 
Carlo algorithm, we propose and analyze an adaptive deterministic algorithm. 
We restrict a grid search to nested subregions that promise to provide improve- 
ment of the current solution, and we obtain an exponential rate of convergence 
in function evaluations. For proving the main result we restrict ourselves to 
functions on hypercubes. In a final section we outline how to extend the method 
to the general case and give some numerical examples. 

1. INTRODUCTION 

Let S be a closed and bounded subset of Rn, f a continuous real-valued 
function defined on S, and y* := maXXEs f(X) . In [8] a pure adaptive search 
algorithm for the approximate calculation of y* is introduced provided that 
f is concave on a convex body S, and that y* = f(x) has a unique solution 
x-x* 

Algorithm 1. 

Step 0. Set k 0, So =S and yo < minxEs f(x)= Yk 
Step 1. Generate xk+l uniformly distributed in Sk+1 {XIX E Sk and f(x) 

2Yk} 
Step 2. Set Yk+l = f(Xk+l). If a (preset) stopping criterion is met, stop. Oth- 

erwise set k :- k + 1 and return to Step 1. 

By construction, Yk is an increasing sequence of points that almost surely 
converges to y*. It is shown in [8] that for the expectation value E(yk) (in the 
standardized case y* := minxEs f(x) = 0, y* = 1, Yo = Y*) 

(1.1 E(Yk) 1 (I n ) 
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Furthermore, the probabilistic estimate 

k,,m :=min{kIPr(Yk?> )- > 1 - d 

<2(n+l)log (m (1+ )) 

holds for all m > 1 and 0 < a < 1. 
These results are shown by considering the worst case of this algorithm, i.e., 

taking f = g, where 

(1.3) g(x) :=inf{yI(x, y) E convex hull of(x*, y*) and (S, y*)}. 

In applications of Algorithm 1 some striking problems occur: The authors of 
[8] write, "However, at the present time we do not have efficient procedures for 
generating uniformly distributed points in general convex regions." The actual 
and much more serious problem is that in Step 1 of Algorithm 1 it is assumed 
that the new set Sk+1 is given explicitly (in a constructive way). But this, of 
course, in general is not the case, and so for practical purposes a further step 
would be necessary where Sk+1 is determined or at least estimated. In this case 
it is doubtful whether the bound (1.2) remains linear in the dimension n or 
not. We remark here that in the forthcoming paper [10] linearity with respect 
to the dimension is extended to the case where f is 1-Lipschitz-continuous. 

Another disadvantage (as is characteristic for all pure Monte Carlo methods) 
is, of course, that the results are merely probabilistic. The aim of the present 
paper is the presentation of an adaptive Quasi-Monte-Carlo algorithm which 
is now practicable in the form as stated. Furthermore, deterministic error esti- 
mates are established, and for a large class of functions exponential convergence 
to the maximum is shown. 

2. THE ALGORITHM 

Let for simplicity S = [O, 1 ]n be the n-dimensional unit cube, f: SF-+ R be 
a function which is ?-Lipschitz-continuous with 1 < ? < 2. This means that 
there exists a constant L > 0 such that for all xo E S there is an A(xo) E Rn 
satisfying 

(2.1) If(x) -f(xo) -A(xo)(x-xo)I < Lllx-xxoll 

for all x E S. (By II * we denote the maximum norm.) 
Of course, if ? > 1 then A(xo) = grad fIxo (by the definition of differentia- 

bility), and if ? = 1 then we may take A(xo) = (0, ..., 0). 
Let maxXES f(x) y* and e > 0. We want to determine a point x E S 

with y* f(x)<e. 

Algorithm 2. 
Step 0. Io := S =[0, 1]n 
Step 1. Ik is a union of cubes of the form 

I| [2k 1] withO<ai<2k 11[F 2kj 
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Construct Ik+l in the following way: Divide each of the subcubes of 
Ik into 2n subcubes of half side length in the natural way and set 

Mk+1 := max{f(x)I x is vertex of one of the new subcubes }. 

Take Ik+I as the union of all new subcubes which have at least one 
vertex x with 

L 
f(x) > Mk+1 - 2(k+l)qK 

Step 2. Take xk+l such that Mk+1 = f(Xk+1). If 2(kL+)t1 < e take x := Xk+1. 

Otherwise set k := k + 1 and return to Step 1. 

3. ANALYZING THE ALGORITHM 

We first need the following 

Lemma. Let W:= Hjdbi~, bi + p] C [0, if be a subcube of S with vertices 
Xl ... , X2n , and let f be ?-Lipschitz-continuous on S with constant L. Then 
(3.1) max f(x) - max (xi) < Lp'. 

xEW i=1 ..2n 

Proof. Let f(xo) maxXEw f(x). Then f(x) f(xo) + A(xo)(x - xo) takes 
its maximum in W at one point xi so that 

f(xi) := maxf(xj) > f(xo) = f(xo) 

and 

If(xj) - f(xj)I < Lllxo - xjII < Lp1, 
from which the result follows. 0 

For every cube W with side length 2 and with f(xi) < Mk - L for all 
vertices xi, by the lemma we have f(x) < Mk < y* for all x E W . It 
follows that x* E Ik for all x* E S with f(x*) = y*. Therefore, we obtain 
IMk _ y*I < < e if k := [110g2 L1, where [xl denotes the least integer 
larger or equal to x. 

Hence, one has to run through the algorithm [ log2 L1 times. As a measure 
for the complexity of the algorithm we have to consider the number of function 
evaluations needed. Trivially, in any case, at most (2k + l)n evaluations are 
needed to determine Io, I,, . . . , Ik . So in the worst case we need N = (2k+1)n 
points to achieve an error less than 

L L 
(3.2) = (Ni/n- 

which is the usual rate in nonadaptive Quasi-Monte-Carlo-optimization (see [4] 
or [6]). 

In many cases we will now get much better estimates. The quality of these 
estimates depends on the behavior of f in the neighborhood of its maximum 
points. From now on we make use of the following three assumptions: 

(A) There are at most finitely many points xl*, . x. , 4 with f(x7) = y*. 
(B) If 

y := sup{f(x)I x is point of a local extremum of f and x # x* for all i }, 
then let b:= y*-y> 0. 
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(C) There are constants c, c, y > 0 with y* - f(x) ? cjjx7 - xljy for all x 
with j1x7 -xll < a and every i= 1, ... w. 

We will show 

Theorem. With the above notation let Ik be a dyadic cube such that for every 
point x E Ik the estimate y* - f(x) < e holds. For the determination of Ik by 
Algorithm 2 we need at most K(e, f) function evaluations, where 

f { 1 + 2w max Q2(L )y7, 3n [I log2 ) ifi?< y, 

It, +2w/.3 1092 elif 17> Y 

with 
n 

( ) (( (~min(b, c(62)Y)) 

I2 = 112(f, n) = 2n(3-+) 2L 

3 3 (f, n)= ( max2( c)3) 

Furthermore, {x1, ...x , xW} = flo= Ik k and for every x E Ik there is an 
i E {1, ... , w} with lix - xl11 < (2e) provided that 

k > max ,1092 min (b, c (2 l'1092 <l 
Proof. Let ko be such that < 2 and Mk -L >max(j,y* C(4)Y). Since Mko?y* ~ ~ ~ ~ ~ ~~4 y-> a(~y -c L). ic 
Mko > Y* - this is satisfied for 

k m (!lo m 2L l og2i) 

Thus, for the determination of Io, .. , Ik at most 

max ((2 ( + ) (+ )) 

function evaluations are needed. 
Let now k > ko. Then all vertices of subcubes of Ik are in a d-neighborhood 

of one of the xi . This follows from (C), since for all x with j1x7 - xli > 6 I i = 1, 2 
(i=l... ,W) we have 
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Note that the subcubes of Ik have sidelength L < 12 and each of these subcubes 
has at least one vertex xi with 

f(xi) > Mk - L >LM - 
L 

- > max y -c 

Therefore, fdr k > ko we have for at least one vertex xi of every subcube 
of Ik 

y* - f(xi) < 2L 

Thus, we obtain 

2L > Y* _f(Xi) > C|| - Xjilly 

which yields 

114 xj -x c2k ? 

for some i- 1, .., w, and the second assertion of the theorem follows. 
Furthermore, Ik contains at most 

k+1 2L / + \\fl 
W12'+' ( 2L > + 3) < 2n (max (2 (32) 3)) 

vertices of subcubes. 
Therefore, for the determination of I,, ... Ik(k > ko) we need at most 

k f~~~' (2L \ ~ 
,ul(f, n) + 2w E max (2j 1C 1 ))3 

J 1U1(f, n) + 2w max (2n (2j)n/Y 2n(k+1)(1-ti/Y) 3nk) if 1 < y 

| Al (f , n) + 2w max ((2L)n/y 2k, 3nk) if ?I >.Y 

function evaluations. Setting k r [ log2 L1 completes the proof. O 

Remark. The following relations between the number N of function evalua- 
tions and the error term y* - f(x) =: A are satisfied: 

(3.3) A<pe-N if 11ty 

and 

(3.4) A<q if <y 
* ~ ~~~~ Nn(Y- 7) 

with constants p = p(f, n) and q = q(f, n) . This means that our algorithm is 
exponentially fast in function evaluations (even in the "worst case" considered 
in [8]). 

4. CONCLUDING REMARKS AND NUMERICAL EXAMPLES 

In this final section we add some general remarks concerning the strength 
and usefulness of our method. First of all, note that in [8] the functions were 
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assumed to be concave, which is much more restrictive than a Lipschitz condi- 
tion. Clearly, our Lipschitz conditions are global ones. However, it is sufficient 
to know a Lipschitz constant in a suitable box containing the maximum point 
(in the case that it is unique). 

In the description of Algorithm 2 we restricted ourselves to the simplest case, 
where the functions are defined on hypercubes. In the following we discuss 
briefly how to proceed in the case of a function on a compact region S C Ren. 
The main idea is to replace the sequence of vertices of axis-parallel subcubes 
by a fixed "well-distributed" point set P = p... Pm} C S. An appropriate 
measure for the distribution of points in S is the so-called dispersion 

(4.1) Dm(P) = max mmin d(x, pj), 
XES j= 1..,m 

where d denotes a suitable metric on S (e.g., the Euclidean one). For the 
description of the algorithm in the general case we confine ourselves to the case 
that there is a unique maximum point x* (from the presentation of the theorem 
it is clear how to proceed in the case of finitely many maximum points). 

In the first step we have to determine those points in P, which are possible 
candidates for containing x* in a Dm(P)-neighborhood (a precise description 
of these points involves the Lipschitz condition and runs along the same lines as 
the description of Algorithm 2 ). In a further step we take a homothetic image 
of P in each of these neighborhoods and repeat the first step. This procedure is 
iterated until a prescribed stopping condition is satisfied. 

The order of convergence of this algorithm substantially depends on the dis- 
persion. For this purpose point sets with low dispersion are needed. Such point 
sets, in connection with Quasi-Monte-Carlo-optimization, were considered in a 
series of papers (cf. [3, 4, 6]). In these papers constructions of such sequences 
and estimates for their dispersion are established. In general, 

(4.2) Dm(P) 1 
mn 

holds. In C. Biester's Ph.D. thesis [11 the above algorithm is studied in the 
case of various compact regions like balls, cylinders, and special polyhedra. 
Furthermore, constructions of sequences with low dispersion in those regions 
are presented. For a detailed survey of the literature on Quasi-Monte-Carlo- 
Optimization we refer to Chapter 6 of the recent monograph [5] by H. Nieder- 
reiter. 

In the case of optimization problems with constraints there are two possibil- 
ities for applying our algorithm: The first method is to consider the constraints 
as a compact manifold embedded in some Euclidean space. This manifold can 
be taken as the compact region S in the above description; as a metric on S 
one can use the geodesic metric. The case where the manifold is a sphere is ex- 
tensively studied in [ 1] and [ 12]. The second method is to use transformations 
of this manifold to the unit cube. Such transformation methods were studied 
in detail by Niederreiter and Peart [7]. 
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In the following we present some numerical examples demonstrating possible 
applications of Algorithm 2. We note that a MODULA-code of the algorithm 
is listed in [1] and a PASCAL-code is available by the second author. The first 
example is a simple "school problem" and shows that, of course, in such cases 
the algorithm works very well. The subsequent examples seem to be much more 
interesting. Example 2 is a constrained problem in 3 dimensions which some- 
times is used as a test example in global optimization (cf. [2]). Note that our 
method can be used for constrained problems just by assigning some fixed value 
to the objective function outside the constraint. Example 3 (Colville No. 4) and 
Example 4 (Banana-function in 5 dimensions) are also well-known test problems 
in global optimization (cf. [2, 9]). A reasonable acceleration of the algorithm 
can be obtained in these cases by a pre-search localizing some tight neighbor- 
hood of the extreme value. The other examples are nondifferentiable functions 
up to dimension 6. The computations show that also for such functions the 
algorithm works well (which can be considered as one main advantage of Algo- 
rithm 2). In the following tables, M denotes the exact value of the maximum, 
M the approximation by Algorithm 2 after k steps with the help of e gener- 
ated cubes. The number of function evaluations clearly is 2n . We stopped the 
computations if we reached a good approximation of the maximum or if too 
many cubes were needed. Finally, we remark that in [1] also a slightly different 
Algorithm 2* is studied. This algorithm is based on a point sequence of small 
dispersion and the approximate evaluation of grad f. 

Example 1. 

f(XI, X2, X3) = -(X1 - 0.567)2 - (X2 - 0.89)2 - (X3 - 0.123)2, 
M = O.OOOOOE + 00 

k M 

1 -2.14718E-01 1 
5 -2.49249E-04 889 
10 -7.45346E-07 5377 
15 -6.92149E-10 10201 
20 -1.30257E-12 15105 
25 -4.99600E-16 19921 
26 -5.55112E-17 20825 
27 -5.55112E-17 21369 
28 O.OOOOOE+00 22009 

Example 2 (cf. [2, p. 60]). 

f(XI , X2, X3) = X1X2X3 
under the constraints 

72 -x - 2x22- 2x3 >0, 0< xi< 42, i = 1,2, 3, 
M = 3.45600E + 03 
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k M 

1 O.OOOOOE+00 1 
2 O.OOOOOE+00 9 
3 2.31525E+03 73 
4 2.89406E+03 529 
5 3.25582E+03 593 
6 3.29652E+03 721 
7 3.38809E+03 873 
8 3.43514E+03 1113 
9 3.43579E+03 1529 
10 3.44756E+03 1681 
11 3.45346E+03 2097 
12 3.45347E+03 2721 
13 3.45495E+03 3137 
14 3.45568E+03 4257 
15 3.45568E+03 7265 
16 3.45587E+03 10753 
17 3.45596E+03 16705 
18 3.45596E+03 28065 
19 3.45598E+03 51817 
20 3.45600E+03 54217 

Example 3 (cf. [2, p. 61]). 

f(XI, X2, X3, X4) = 100(x2-X 1)2 + (1-XI)2 + 90(X4-X32)2 + (1-X3)2 

+ 10.1((X2 - 1)2 + (X4 - 1)2) + 19.8(X2 - 1 - 1), 

M = O.OOOOOE + 00 

k M! 

1 1.60580E-01 1 
2 1.19175E-01 17 
3 8.34913E-04 177 
4 8.34913E-04 1073 
5 8.34913E-04 1329 
6 3.48864E-04 1585 
7 2.64081 E-05 1841 
8 2.64081 E-05 2705 
9 6.55810E-07 2961 
10 6.55810E-07 3217 
11 4.59164E-07 3601 
12 4.27281 E-09 4993 
13 4.27281 E-09 6561 
14 4.27281 E-09 8225 
15 7.41807E-10 14257 
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Example 4 (5-dimensional Banana-function, cf. [9]). 

4 

f(x, X2, X3, X4 X5) = (10(xk+l1X,2)2 + (1 Xk)2) 
k=1 

M = O.OOOOOE + 00 

k M 

1 8.47812E-01 1 
2 1.46382E-03 33 
3 1.46382E-03 1057 
4 1.46382E-03 2081 
5 1.46382E-03 3105 
6 6.04788E-04 4129 
7 4.60453E-05 6209 
8 4.60453E-05 9793 
9 1.13945E-06 10817 
10 1.13945E-06 13729 
11 8.03054E-07 14753 
12 7.44058E-09 15777 
13 7.44058E-09 18881 
14 7.44058E-09 19905 
15 1.29177E-09 21697 
16 6.32966E-10 27329 

Example 5. 

4 

f(xI, X2, X3, X4) = 0.2620-Z (Ixi - 0.24721 + Ixi - 0.76791 - Ixi - 0.31271) 
i=l 

M = O.OOOOOE + 00 

k ! 

1 -9.28400E-01 1 
5 -7.16000E-02 1297 
10 -1.28752E-03 3873 
15 -6.68168E-05 7233 
20 -1.96695E-06 10081 
22 -5.96046E-08 11633 
23 -5.96046E-08 13025 
24 -5.96046E-08 13281 
25 -5.96046E-08 13537 
26 -5.96046E-08 13793 
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Example 6. 

f(XI, X2, X3, X4) = 10.8974 - Ixi - 0.317211 - xi + X2 - 0.54311 
- IXI +X2 +X3- 0.71851 - Ixj+X2 +X3+x4- 0.84341, 

M = 0.89740E +00 

k ! e 

1 -3.14800E-01 1 
2 2.96400E-01 17 
3 6.62200E-01 241 
4 7.33400E-01 1249 
5 8.11400E-01 2513 
6 8.80250E-01 3617 
7 8.88325E-01 4401 
8 8.89913E-01 4721 
9 8.95875E-01 5073 
10 8.95875E-01 5457 
11 8.96486E-01 5713 
12 8.96709E-01 6033 
13 8.97114E-01 6385 
14 8.97308E-01 6721 

Example 7. 

f(X1, X2, X3, X4) = 11 - Ixi - 0.317211 - 1l- IX1 +X2 - 0.54311/ 

-IXI +X2 +X3- 0.71851 - Ix1+X2 +X3+x4- 0.84341, 

M = 2.OOOOOE + 00 

k M e 

1 7.87800E-01 1 
2 1.39900E+00 17 
3 1.76480E+00 241 
4 1.83600E+00 1249 
5 1.91400E+00 2513 
6 1.98285E+00 3617 
7 1.99093E+00 4401 
8 1.99251E+00 4721 
9 1.99848E+00 5073 
10 1.99848E+00 5457 
11 1.99909E+00 5713 
12 1.99931E+00 6033 
13 1.99971 E+00 6385 
14 1.99991E+00 6721 
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Example 8. 

f(xi, X2, X3, X4, X5) 

5 

= 0.3275 - Z (Ixi - 0.24721 + Ixi - 0.76791 - Ixi - 0.31271) , 
i=l 

M = O.OOOOOE + 00 

k e 

1 - 1.16050E+00 1 
2 -1.16050E+00 33 
3 -8.95000E-02 1057 
4 -8.95000E-02 4641 
5 -8.95000E-02 5665 
6 -6.67501E-02 6689 
7 -1.13750E-02 10273 
8 -1.13750E-02 15425 
9 -8.15639E-03 16449 
10 -1.60941E-03 17473 
11 -1.60941E-03 22625 
12 -8.32170E-04 23649 
13 -3.88712E-04 24673 
14 -2.21819E-04 29825 
15 -8.35359E-05 33409 

Example 9. 

f(xl, X2, X3, X4, X5, X6) 
6 

= 0.3852 - Z (Ixi - 0.24721 + Ixi - 0.76791 - Ixi - 0.31271) 
i=l 

M = O.OOOOOE + 00 

k M 

1 -1.47540E+00 1 
2 -1.47540E+00 65 
3 -2.46001 E-02 4161 
4 -2.46001 E-02 20545 
5 -2.46001 E-02 24641 
'6 -2.46001 E-02 28737 
7 -2.46001E-02 32833 
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